

Thiopeptide Antibiotics

DOI: 10.1002/ange.200602798

Total Synthesis of Antibiotics GE2270A and GE2270T**

K. C. Nicolaou,* Bin Zou, Dattatraya H. Dethe, Dong Bo Li, and David Y.-K. Chen*

Among the thiopeptide antibiotics, GE2270A (1) and GE2270T (2, Scheme 1) occupy a commanding position, not only because of their novel molecular architectures but also as a result of their potent activities against Gram positive bacteria. These thiazolyl peptide antibiotics isolated from *Planobispora rosea* ATCC53773 exert their selective anti-

[*] Prof. Dr. K. C. Nicolaou, Dr. B. Zou, Dr. D. H. Dethe, Dr. D. B. Li, Dr. D. Y.-K. Chen Chemical Synthesis Laboratory@Biopolis Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology, and Research (A*STAR) 11 Biopolis Way, The Helios Block, Nos. 03-08 Singapore 138667 (Singapore) E-mail: david_chen@ices.a-star.edu.sg Prof. Dr. K. C. Nicolaou Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA) E-mail: kcn@scripps.edu

[**] We thank Dr. J. Lim (Institute of Bioengineering and Nanotechnology, A*STAR) for assistance in obtaining the ¹³C NMR spectra of GE2270A (1) and GE2270T (2), and D. Tan (ICES) for assistance with high resolution mass spectrometry (HRMS). Financial support for this work was provided by A*STAR, Singapore.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Scheme 1. Retrosynthetic analysis of antibiotics GE2270A (1) and GE2270T (2) leading to key fragments **3–9**. Boc = tert-butyloxycarbonyl, TBS = tert-butyldimethylsilyl.

bacterial properties through inhibition of the bacterial elongation factor Tu, but not the eukaryote elongation factor-1 alpha.^[2] The complete structure of GE2270A (1) has been fully established through the notable efforts of Tavecchia and co-workers,^[3] and of Heckmann and Bach.^[4] Furthermore, synthetic studies toward the GE2270 factors were also reported by the research groups of Bach^[4,5] and Shin.^[6] Herein, we report the total synthesis of GE2270A (1) and GE2270T (2) through a convergent strategy that features a hetero-Diels–Alder/dimerization process^[7] to construct the trithiazolyl pyridine core of the molecule.

Inspection of the structures of GE2270A (1) and GE2270T (2) reveals, in addition to the 29-membered macrocycle, the presence of one pyridine, one phenyl, one proline, and six thiazole rings, as well as one oxazoline system in the case of 1, or one oxazole moiety in the case of 2. A convergent strategy towards 2 that would provide the oxazoline intermediate en route should additionally provide access to 1, and therefore was preferred. Furthermore, the introduction of the proline-containing tail in the final stages of the synthesis would allow a convenient entry into a range of designed analogues of these naturally occurring antibiotics for structure-activity-relationship (SAR) studies. [2b] Scheme 1 shows the seven key building blocks 3–9 required for such a strategy, as derived from the indicated retrosynthetic analysis. The assembly of 3-9 into the final structures 1 and 2 would demand the construction of the remaining three rings, namely one thiazole, one oxazoline- or oxazole-ring system, and the macrocycle. The latter ring could, in principle, be conveniently closed at any of the five indicated sites through amide bond formation (1)-(5), Scheme 1).

Scheme 2 summarizes the construction of the pyridine core **4**, which is the central scaffold equipped with suitable functionalities for extension in three directions as required for the target molecules. Thus, the thiazole derivative **10**, which had been previously synthesized, [7a] was converted into its

methyl ester 11 (84% yield) by simple ester exchange.[8] Removal of the Boc-acetonide protecting group from methyl ester thiazole derivative 11 with TFA provided the amino thiol 12. Engagement of 12 with aldehyde 13 (prepared by adaptation of a literature procedure)[7a] proceeded smoothly in the presence of KHCO₃ to afford thiazolidine 14 (82% yield for the two steps), an intermediate that served admirably as a precursor to heterodiene 15 (Ag₂CO₃, DBU, pyridine, BnNH₂).^[7a] The latter species 15 proved quite fleeting and furnished under the reaction conditions, and after hydrolysis, the intended [4+2]-cycloaddition/dimerization product, the amino dehydropiperidine fragment 16 in 60% yield as a 1:1 mixture of trans diastereoisomers. [7a] Finally, heating a solution of 16 with DBU in EtOAc to reflux gave the desired trisubstituted pyridine core 4 in 50% yield through aromatization, which involved expulsion of ammonia and dehydrogenation.

Scheme 2. Synthesis of trithiazole-substituted pyridine **4.** Reagents and conditions: a) nBu_2SnO , MeOH, reflux, 6 h, 84%; b) TFA/CH₂Cl₂ (1:1), 25 °C, 4 h; then MeOH/H₂O (1:1), 25 °C, concentration in vacuo; c) **12**·TFA (1.0 equiv), **13** (1.0 equiv), KHCO₃ (3.0 equiv), MeOH/H₂O (1:1), 25 °C, 16 h, 82% for the two steps; d) Ag_2CO_3 (1.1 equiv), BnNH₂ (1.0 equiv), DBU (0.25 equiv), py, -15 °C, 1 h; then H₂O/EtOAc (1:1), 1 h, 60%; e) DBU (5.0 equiv), EtOAc, reflux, 5 h, 50%. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, py = pyridine, TFA = trifluoroacetic acid.

Zuschriften

Scheme 3. Synthesis of trisubstituted thiazole **6.** Reagents and conditions: a) LDA (2.5 equiv), methoxyacetyl chloride (1.2 equiv), THF, -78 to $25\,^{\circ}$ C, 16 h, 59%; b) LiBH₄ (1.0 equiv), THF/CH₂Cl₂/MeOH (4:2:1), $-78\,^{\circ}$ C, 5 min; c) TFA/CH₂Cl₂ (1:4), $0\,^{\circ}$ C, 1 h; d) Boc-valine (1.1 equiv), HATU (1.5 equiv), iPr₂NEt (3.0 equiv), CH₂Cl₂, $25\,^{\circ}$ C, 3 h, 71% for the three steps; e) TBSCl (1.1 equiv), imidazole (1.5 equiv), DMF, $20\,^{\circ}$ C, 16 h, 77%; f) Lawesson reagent (1.5 equiv), THF, reflux, 16 h, 66%; g) TBAF (1.1 equiv), THF, 5 h, 93%; h) DAST (1.5 equiv), CH₂Cl₂, $-78\,^{\circ}$ C, 1 h; i) BrCCl₃ (1.1 equiv), DBU (2.2 equiv), CH₂Cl₂, $0\,^{\circ}$ C, 1 h, 84% for the two steps. DAST = N, N'-diethylaminosulfur trifluoride, HATU = O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, LDA = lithium diisopropylamide, TBAF = tetrabutylammonium fluoride.

Scheme 3 summarizes the synthesis of the thiazole derivative 6 from the Boc-glycine methyl ester 17. Thus, C-acylation of 17 with methoxyacetyl chloride (18) as facilitated by LDA at -78 °C produced the Boc derivative 19 (59% yield). Sequential exposure of 19 to LiBH₄ and TFA reduced the ketone moiety and liberated the amine, which provided amino alcohol 21 via intermediate 20. Reaction of 21 with Boc-valine in the presence of HATU and iPr₂NEt afforded the hydroxy dipeptide 22 in 71% yield over the three steps. Protection of the hydroxy group of 22 as a TBS ether furnished derivative 23 (77% yield). Exposure of 23 to Lawesson reagent in refluxing THF led to thioamide 24 in 66% yield. Removal of the TBS group gave 25 (93 % yield) and subsequent treatment first with DAST,[9] and then with BrCCl₃ and DBU,^[10] furnished the thiazole intermediate 6, through the intermediacy of compound 26, in 84% overall yield for the two steps.

With all seven required fragments 3–9 now available, their assembly into the target molecules 1 and 2 became our next task. From all the possible strategies, we chose first to pursue the one involving macrocycle construction by form-

Scheme 4. Synthesis of bisthiazole subunits 30 and 32. Reagents and conditions: a) LiOH (3.5 equiv), MeOH, 25 °C, 16 h; b) TFA/CH₂Cl₂ (1:4), 25 °C, 1 h; c) HATU (1.1 equiv), iPr₂NEt (2.0 equiv), CH₂Cl₂, 25 °C, 3 h, 80% for the two steps from 5; d) LiOH (3.5 equiv), MeOH, 25 °C, 16 h; e) KHCO₃ (3.0 equiv), allyl bromide (2.0 equiv), DMF, 25 °C, 3 h, 70% for the two steps; f) TFA/CH₂Cl₂ (1:4), 25 °C, 1 h, 90%.

ing amide bond ① (Scheme 1). To this end, the carboxylic acid **27** (generated by saponification of methyl ester 5, [11] Scheme 4) was coupled with amine **28** (generated by removal of the Boc group from **6**) under the influence of HATU and iPr₂NEt to afford peptide **29** in 80% overall yield from **5**

Scheme 5. Synthesis of tetrathiazole 40. Reagents and conditions: a) TFA/H₂O (3:1), 25 °C, 1 h; b) 8 (1.1 equiv), HATU (1.2 equiv), iPr₂NEt (3.0 equiv), CH₂Cl₂, 25 °C, 3 h, 85 % for the two steps from 4; c) TBSCl (2.0 equiv), imidazole (3.0 equiv), DMF, 25 °C, 16 h, 82 %; d) Lawesson reagent (1.5 equiv), benzene, reflux, 16 h, 80 %; e) HF-py (10 equiv), pyridine/THF (1:8), 25 °C, 2 h, 92 %; f) DAST (1.5 equiv), CH₂Cl₂, -78 °C, 1 h; g) BrCCl₃ (1.5 equiv), DBU (3.0 equiv), CH₂Cl₂, 0 °C, 1 h, 69 % for the two steps from 36; h) TFA/CH₂Cl₂ (1:4), 25 °C, 1 h; i) Boc-glycine (1.1 equiv), HATU (1.2 equiv), iPr₂NEt (3.0 equiv), CH₂Cl₂, 25 °C, 24 h, 90 % for the two steps; j) TFA/CH₂Cl₂ (1:4), 25 °C, 1 h.

(Scheme 4). Basic hydrolysis of the methyl ester of compound 29 then led to carboxylic acid 30. Next to be targeted was the hexacyclic system 40, whose construction from the pyridine core structure 4 is summarized in Scheme 5. Thus, 4 was exposed to acidic conditions (TFA/ H₂O) which led to the collapse of the Bocacetonide protecting group, thereby generating the corresponding amino alcohol. This amino alcohol was then coupled with the carboxylic acid derivative 8 (prepared through a modification of a literature procedure)[12] in the presence of HATU and iPr2NEt to afford the hydroxy dipeptide 33 in 85 % yield over the two steps. In preparation for the construction of the fourth thiazole system required in the growing fragment, compound 33 was sequentially converted into the TBSether derivative 34 (TBSC1, 82% yield), thioamide 35 (Lawesson reagent, 80% yield), and hydroxy thioamide 36 (HF·py, 92% yield). Conversion of 36 into tetrathiazole 37 was carried out by sequential exposure to DAST $^{\![9]}$ and $BrCCl_3\!/DBU^{\![10]}$ in 69% overall yield. The Boc group was then cleaved off this intermediate (TFA/ CH₂Cl₂), which allowed its elongation to the glycine derivative 40 through a sequence that involved liberation of the amine to afford 38 (TFA), coupling with the Boc-glycine (HATU/iPr₂NEt) to give 39 (90% overall yield) and cleavage of the newly introduced Boc group (TFA).

The resulting amine **40** was coupled with the dithiazole-containing carboxylic acid **30** (Scheme 6) through the action of HATU and *i*Pr₂NEt to afford peptide **41** (66% overall yield from **39**), which was further elaborated to the macrocycle **46** as indicated in Scheme 6. Thus, treatment of diester **41** with 1.0 equiv of Me₃SnOH^[13] resulted in the formation of the two monoacids **42** and **43** in 40% combined yield and in around a 1:1 ratio (90% based on recovered starting material). Chroma-

tographic separation of the two regioisomers gave the pure carboxylic acids **42** and **43**, each of which was separately subjected to Boc removal (TFA) and macrocyclization conditions. While the amino acid **45** derived from the less polar isomer **43** ($R_{\rm f}$ =0.58, silica gel, EtOAc/MeOH 1:1) underwent smooth ring closure (verified by LC-MS analysis) to furnish macrocycle **46**, the regioisomeric amino acid **44**, derived from the more polar isomer **42** ($R_{\rm f}$ =0.47, silica gel, EtOAc/MeOH 1:1), failed to cyclize. In light of these observations, subsequent cyclizations were carried out with the mixture of amino acids **44** and **45** (FDPP/iPr₂NEt, CH₂Cl₂/DMF 4:1, 0.0003 M), a practice that proved more convenient

CO₂Me NHBoo Me нΓ 30 =0 MeO₂C a) HATU, **30** CO₂Me b) Me₃SnOH OTBS OTBS 0 MeO. MeO₂0 NHBoo NHR **42**: R = Boo 44: R = H CO₂Me d) FDPP OTBS OTBS ΗÑ =0 =0 HO₂C NHR ΝН NΗ ОМе Me Me 43: R = Boc c) TFA 45: R = H

Scheme 6. Construction of macrocycle **46** (ring closure ①, Scheme 1). Reagents and conditions: a) **30** (1.1 equiv), HATU (1.5 equiv), iPr_2NEt (3.0 equiv), CH_2Cl_2 , 25 °C, 24 h, 66% for the two steps from **39**; b) Me₃SnOH (1.0 equiv), 1,2-dichloroethane, 60 °C, 16 h, **42**: 20% and **43**: 20% (90% based on recovered starting material); c) TFA/CH₂Cl₂ (1:4), 25 °C, 1 h; d) FDPP (5.0 equiv), DMF/CH₂Cl₂ (1:4), 0.0003 M, 24 h, 20% for the two steps. FDPP = pentafluorophenyl diphenylphosphinate.

and efficient, and which led to the isolation of macrocycle **46** in 20% overall yield from **42/43**.

The identical macrocycle **46** was obtained through a modified route in which the macrocycle was formed by ring closure 4 (see Scheme 1) as shown in Scheme 7. Thus, compound **39** was hydrolyzed with Me₃SnOH^[13] to afford a mixture of inseparable monocarboxylic acids **47** and **48** (ca. 1:1 ratio, 45% along with 50% recovered starting material). Acids **47** and **48** were then coupled with amine **32**, which was obtained from **30** by allylation (KHCO₃/allyl bromide, 70% from **29** via intermediate **31**) and TFA-induced removal of the Boc group (90%, Scheme 4), in the presence of HATU and

Zuschriften

Scheme 7. Alternative construction of macrocycle 46 (ring closure (4), Scheme 1). Reagents and conditions: a) Me₃SnOH (1.0 equiv), 1,2dichloroethane, 60°C, 20 h, 47/48 (ca. 1:1 ratio) 45% (90% based on 50% recovered starting material); b) 32 (1.1 equiv), HATU (1.5 equiv), $\textit{iPr}_2 NEt \ (3.0 \ equiv), \ CH_2 Cl_2, \ 25 \ ^{\circ}C, \ 16 \ h, \ 70\%; \ c) \ [Pd(PPh_3)_4] \ (20 \ mol\,\%), \ NMA \ (2.0 \ equiv), \ THF, \ 25 \ ^{\circ}C, \ 1 \ h; \ d) \ TFA/CH_2 Cl_2 \ (1:4), \ TFA/CH_2 Cl_2 \ ($ e) FDPP (5.0 equiv), iPr₂NEt (10 equiv), CH₂Cl₂/DMF (1:4, 0.30 mm), 25 °C, 24 h, 30 % for the three steps. NMA = N-methylaniline.

iPr₂NEt, to afford the coupling products 49 and 50. The mixture of 49/50 was converted into cyclization precursors 53 and 54 by deallylation with [Pd(PPh₃)₄] and Boc removal (TFA). Exposure of the mixture of 53 and 54 to the macrolactamization conditions (FDPP/iPr2NEt, CH2Cl2/ DMF 4:1, 0.0003 m) again furnished only one macrocycle 46 (30% overall yield from 49/50 for the three steps), which was proven from chromatographic and spectroscopic data to be identical to the one obtained from 43 or 42/43, as described earlier (Scheme 6). Again, the formation of a single regioisomer 46 in this cyclization reaction points to a unique structural feature of these systems. The structural identity of the formed macrocycle and the precise reasons for its preference in these reactions were not known at this stage. While the tentatively assigned structure 46 was later proven by its eventual conversion to the natural products 1 and 2 (described below), the rationale for its formation in preference to its regioisomer remains to be elucidated.

Macrolactamizations were also performed at sites (3) and (5) (see Scheme 1) using amino acid precursors prepared by modifications of the chemistry described above.^[14] Interestingly, while ring closure at site (5) proceeded smoothly and again furnished the same macrocycle 46 (15% overall yield for the last three steps involving deprotection of the amino acid and formation of the peptide bond) as from the ring closures at (1) and (4), macrolactamization at site (3) was not feasible because of the reluctance of fragments longer than glycine to couple with the amino group of that site.

The final stages of the total synthesis of GE2270A (1) are shown in Scheme 8. Thus, the methyl ester of advanced

7954

Scheme 8. Completion of the total synthesis of GE2270A (1). Reagents and conditions: a) Me₃SnOH (10 equiv), 1,2-dichloroethane, 80°C, 5 h; b) ι-serine methyl ester (1.1 equiv), HATU (1.5 equiv), iPr₂NEt (3.0 equiv), CH₂Cl₂, 25°C, 16 h, 55% for the two steps; c) DAST (1.5 equiv), CH₂Cl₂, -25°C, 1 h, 85%; d) TBAF (1.2 equiv), THF, 25°C, 80%; e) Me₃SnOH (10 equiv), 1,2-dichloroethane, 80°C, 1 h; f) ι-proline amide (1.1 equiv), HATU (1.2 equiv), iPr₂NEt (2.0 equiv), CH₂Cl₂, 25°C, 3 h, 60% for the two steps.

macrocycle 46 was hydrolyzed with Me₃SnOH, [13,15] affording carboxylic acid 55. The convergent strategy for the introduction of the required dipeptide fragment (L-serine-L-prolinamide) was unsuccessful. A stepwise approach was adopted whereby attachment of the L-serine moiety was carried out first, thereby yielding hydroxy methyl ester **56** in 55 % overall yield for the two steps. Generation of the desired oxazoline moiety was then carried out by exposing hydroxy amide 56 to DAST^[9] in CH₂Cl₂ at -25 °C to furnish ester silyl ether **57** in 85% yield. Sequential treatment of the latter compound with TBAF followed by Me₃SnOH^[13,15] led, through the intermediacy of hydroxy methyl ester 58 (80% yield), to hydroxy carboxylic acid 59, which was set for the final coupling. Indeed, reaction of 59 with L-proline amide 9 in the presence of HATU and iPr2NEt furnished GE2270A (1) in 60% overall yield from 58. Synthetic 1 exhibited identical physical properties (in ¹H and ¹³C NMR spectra, and MS) to those reported[1c] for the naturally occurring substance. Although no specific optical rotation has been reported for GE2270A (1), we assumed that 1 and its congeners were derived in nature from natural amino acids, as previously suggested by degradation studies.^[3]

Advanced intermediate oxazoline **58** encountered along the way to **1** was also converted into GE2270T (**2**) as shown in Scheme 9. Thus, exposure of oxazoline **58** to the action of BrCCl₃ and DBU^[10] gave oxazole methyl ester **60**. Hydrolysis of **60** to give carboxylic acid **61** was smoothly accomplished by Me₃SnOH.^[13,15] Finally, coupling of **61** with L-proline amide **9**, facilitated by HATU and iPr₂NEt as described above, furnished GE2270T (**2**) in 40% overall yield from **58** (three steps). The physical properties of synthetic **2** were in accordance with its assigned structure and the literature data.^[1c]

The chemistry described herein demonstrates the applicability of the [4+2]-cycloaddition/dimerization cascade involving heterodienes^[7] in complex molecule construction, and the exquisite regioselective preferences of the ring-closing reactions in thiopeptide-like substrates. Furthermore, the high convergency associated with this route renders this strategy particularly suited for analogue synthesis and SAR

Zuschriften

Scheme 9. Completion of the total synthesis of GE2270T (2). Reagents and conditions: a) BrCCl₃ (1.5 equiv), DBU (3.0 equiv), CH_2Cl_2 , 0 to 25 °C, 16 h; b) Me₃SnOH (10 equiv), 1,2-dichloroethane, 80 °C, 6 h; c) L-proline amide (1.1 equiv), HATU (1.2 equiv), iPr_2NEt (1.5 equiv), CH_2Cl_2 , 25 °C, 5 h, 40% for the three steps.

studies, especially at the proline–oxazole tail end^[2b] of the molecule, with an advanced intermediate serving as a common precursor to a wide variety of designed molecules as potential new antibacterial agents.

Received: July 13, 2006

Published online: October 24, 2006

Keywords: antibiotics · hetero-Diels–Alder reaction · macrocycles · natural products · total synthesis

- a) E. Selva, G. Beretta, N. Montanini, G. S. Saddler, L. Gastaldo, P. Ferrari, R. Lorenzetti, P. Landini, F. Ripamonti, B. P. Goldstein, M. Berti, L. Montanaro, M. Denaro, J. Antibiot. 1991, 44, 693-701; b) J. Kettenring, L. Colombo, P. Ferrari, P. Tavecchia, M. Nebuloni, K. Vekey, G. G. Gallo, E. Selva, J. Antibiot. 1991, 44, 702-715; c) E. Selva, P. Ferrari, M. Kurz, P. Tavecchia, L. Colombo, S. Stella, E. Restelli, B. P. Goldstein, F. Ripamonti, M. Denaro, J. Antibiot. 1995, 48, 1039-1042.
- [2] a) S. E. Heffron, F. Jurnak, *Biochemistry* 2000, 39, 37-45; b) J. Clough, S. Chen, E. M. Gordon, C. Hackbarth, S. Lam, J. Trias, R. J. White, G. Candiani, S. Donadio, G. Romanò, R. Ciabatti, J. W. Jacobs, *Bioorg. Med. Chem. Lett.* 2003, 13, 3409-3414.

- [3] P. Tavecchia, P. Gentili, M. Kurz, C. Sottani, R. Bonfichi, E. Selva, S. Lociuro, E. Restelli, R. Ciabatti, *Tetrahedron* 1995, 51, 4867–4890.
- [4] G. Heckmann, T. Bach, Angew. Chem. 2005, 117, 1223-1226; Angew. Chem. Int. Ed. 2005, 44, 1199-1201.
- [5] O. Delgado, G. Heckmann, H. M. Müller, T. Bach, J. Org. Chem. 2006, 71, 4599–4608
- [6] a) K. Okumura, T. Suzuki, C. Shin, Heterocycles 2000, 54, 765-770; b) T. Suzuki, A. Nagasaki, K. Okumura, C. Shin, Heterocycles 2001, 55, 835-840; c) K. Okumura, H. Saito, C. Shin, K. Umemura, J. Yoshimura, Bull. Chem. Soc. Jpn. 1998, 71, 1863-1870.
- [7] a) K. C. Nicolaou, M. Nevalainen, B. S. Safina, M. Zak, S. Bulat, Angew. Chem.
 2002, 114, 2021-2025; Angew. Chem. Int. Ed. 2002, 41, 1941-1945; b) K. C. Nicolaou, B. S. Safina, M. Zak, A. A. Estrada, S. H. Lee, Angew. Chem. 2004, 116, 5197-5202; Angew. Chem. Int. Ed. 2004, 43, 5087-5092; c) K. C. Nicolaou, B. S. Safina, M. Zak, S. H. Lee, M. Nevalainen, M. Bella, A. A. Estrada, C. Funke, F. J. Zecri, S. Bulat, J. Am. Chem. Soc. 2005, 127, 11159-11175.
- [8] P. Baumhof, R. Mazitschek, A. Giannis, Angew. Chem. 2001, 113, 3784–3786; Angew. Chem. Int. Ed. 2001, 40, 3672–3674.
- [9] A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno, D. R. Williams, *Org. Lett.* **2000**, 2, 1165–1168.
- [10] D. R. Williams, S. Patnaik, M. P. Clark, J. Org. Chem. 2001, 66, 8463 – 8469.
- [11] L. Somogyi, G. Haberhauer, J. Rebek, Tetrahedron 2001, 57, 1699–1708.
- [12] a) D. B. Hansen, M. M. Joullié, Tetrahedron: Asymmetry 2005, 16, 3963-3969; b) D. B. Hansen, X. Wan, P. J. Carroll, M. M. Joullié, J. Org. Chem. 2005, 70, 3120-3126; c) E. Freund, F. Vitali, A. Linden, J. A. Robinson, Helv. Chim. Acta 2000, 83, 2572-2579.
- [13] K. C. Nicolaou, A. A. Estrada, M. Zak, S. H. Lee, B. S. Safina, Angew. Chem. 2005, 117, 1402–1406; Angew. Chem. Int. Ed. 2005, 44, 1378–1382.
- [14] Details of these experiments will be described in the full account of this work.
- [15] K. C. Nicolaou, M. Zak, B. S. Safina, A. A. Estrada, S. H. Lee, M. Nevalainen, J. Am. Chem. Soc. 2005, 127, 11176–11183.